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Abstract—A cascade radical cyclization process involving oxime ethers tethered to a brominated phenyl and an activated olefin moi-
ety is described. The generated aryl radicals using tri-n-butyltin hydride react with the C@N bond to yield neutral alkyl-oxyaminyl
radicals, which were then simultaneously captured by the activated double bond to provide heterocyclic systems with a pyrrolidinic
nucleus.
� 2006 Elsevier Ltd. All rights reserved.
Cascade radical reactions have become a powerful tool
to synthesize polycyclic frameworks, since they allow
the efficient construction of a number of bonds in a
single reaction.1 Although most of the efforts in this area
have focused on carbon centered radicals, nitrogen
radicals have attracted attention because they provide
access to a variety of important heterocyclic systems.2

Several methods have been reported for the generation
and capture of nitrogen centered radicals, for example,
neutral dialkylaminyl radicals (R1R2N�), for the synthe-
sis of alkaloids and related heterocycles.3 In contrast,
no reports involving the trapping of neutral alkyl-
oxyaminyl radicals [(R1)(R2O)N�] have been published,
although alkoxyaminium radical cations [(R1)(R2O)-
(H)N�+] have been generated by direct anodic oxidation
of d-alkenylmethoxy hydroxilamines and cyclized on
olefin moieties.4 Neutral alkyl-oxyaminyl radicals are
generated via the reductive intermolecular or intra-
molecular addition of carbon radicals to the C@N bond
of oxime ethers, which allows to anticipate their
eventual capture by other functionalities (e.g., double
bonds). Oxime ethers are easily prepared and relatively
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stable compounds compared to imines. Important appli-
cations of radical cyclizations onto carbon–nitrogen
p bonds (C@N), including the oxime ethers has been
well documented.5 Besides, the cyclization rates for
O-benzyl oximes (kc (5-exo) = 4.2 · 107 s�1 and kc (6-exo) =
2.4 · 106 s�1) are two orders of magnitude higher6 than
the analogous cyclization rates of alkenyl radicals,7 indi-
cating the excellent ability of the oxime ether function to
act as an acceptor of alkyl radicals.

Although the kinetic constants for the intramolecular
addition of vinyl8 and aryl9 radicals to oxime ethers
have not been reported, high cyclization constants could
be expected.

Based on these precedents we carried out two sequenced
cyclizations on the oxime ethers 2 bearing a suitably
placed alkenyl moiety. The reaction started with the
formation of aryl radicals 3 which added to the electro-
philic carbon C@N–OR. Our main objective was the
capture of the generated neutral alkyl-oxyaminyl radical
4 by the double bond, before its reduction by Bu3SnH,
in a tandem process, which would lead to the construc-
tion of tricyclic systems 5 (Scheme 1).

Each precursor of the synthesis started from ethyl or
methyl acetoacetate, which were dialkylated with
2-bromo or 2-iodobenzylbromide and allyl bromides,
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Scheme 1. Reagents and conditions: (a) HClÆH2NOBn, pyridine/MeOH, 50 �C; (b) Bu3SnH, AIBN, Cy, 80 �C or Bu3SnH, Et3B/O2, Cy, rt.
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yielding dialkyl oxo-esters 1. The reaction of these oxo-
esters with O-benzyl hydroxylamine hydrochloride in
the presence of pyridine produced the required oxime
ether derivatives 2.

The sequential radical cyclization was carried on the
oxime ethers 2 with Bu3SnH and AIBN in cyclohexane,
under argon, and the mixture stirred at 80 �C for 6–
8 h.10 Comparable yields were obtained when the cycli-
zation was carried out at room temperature using
Et3B/O2 as initiator.

Quantitative conversion of the starting materials into
several compounds was observed. The expected tricyclic
products 5 were distinguished from the 1H NMR spectra
of the crude mixtures as a 1:1 diastereomeric mixture
along with two side products 6 and 8 (Scheme 2). Prod-
ucts 5a–e, 6a,c,d, and 8a,b,d–f were purified by column
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chromatography and their structures characterized by
NMR and HRMS.10,11 Products 5f, 6b,f, and 8c could
not be isolated and then were detected and quantified
from the 1H NMR of the crude mixture. The approxi-
mate yields shown in Table 1 were calculated by inte-
grating the benzyloxy methylene signals in the 1H
NMR spectra of the crude mixtures after KF workup.

As shown in Table 1, the tricyclic products 5 were
formed predominantly in the case of olefins bearing an
electron withdrawing group. Whereas, in the case of
the precursor 2e with an olefin bearing an electron
releasing substituent, both tricyclic compound 5e and
isomerization product 8e were obtained in almost equal
amounts. With the precursor 2f, containing a terminal
double bond, the reduced open chain compound 8f
was obtained as major product (40%), while the
expected compound 5f was only afforded in 8% yield.
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Table 1. Radical cyclization of oximes 2a–f

Oxime R2 R3 Initiator % 5 % 6 % 8

2a CO2Me H AIBN 60 10 15
Et3B 58 9 18

2b CN H AIBN 52 13 20
Et3B 46 11 16

2c Ph H AIBN 42 11 8

2d Ph H AIBN 36 10 6
Et3B 40 9 10

2e Me Me AIBN 24 13 19
Et3B 22 7 18

2f H H AIBN 8 6 40
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Scheme 2 depicts the different pathways followed by
three rotamers or conformers (3a,b, and 3c) of the aryl
radical, which led to the formation of products 5, 6,
and 8. Side products 8a–f were formed via a favored
intramolecular 1,5-hydrogen atom transfer followed by
olefin isomerization and the monocyclized products
6a–f were formed by 6-exo ring closure of the aryl rad-
ical on the C@C double bond. No clear evidences of
compound 9, which would be generated from reduction
of the intermediates alkyl-oxyaminyl radicals 4, were
found in any of the tested systems during this work.

It is important to note that in spite of the side reactions,
the expected bicyclization was significant in four of the
tested systems, which suggests that the first cyclization
of the aryl radical 3 onto the oxime, takes place at a
higher rate than the other routes. Aryl radicals display
higher reactivity than primary alkyl radicals toward
5-exo closures on C@C double bonds,12 and a similar
effect could be expected for aryl radicals through
intramolecular addition to the oxime ether moiety.
As a consequence, this event predominates over the
1,5-hydrogen transfer and 6-exo-cyclization processes
whose respective rate constants 1.2 · 109 and 6.5 · 108

were calculated by Curran and Fairweather13 in allyl
2-iodobenzyl malonate systems.

In summary, a methodology for the intramolecular cap-
ture of neutral alkyl-oxyaminyl radicals by alkenes has
been described for the first time. The best results were
obtained with precursors containing olefins substituted
with electron withdrawing groups, suggesting a nucleo-
philic nature of the alkyl-oxyaminyl radicals. Current
work is focused on improving the efficiency of this
process and the exploration of the scopes of this novel
bicyclization methodology for the synthesis of analo-
gous or intermediates of natural products with pharma-
cological potential.
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